

Daniel Schröer*, Philip Brand, Christopher Fritzsch, Alfons Khoukaz and Marcel Rump for the ANKE-Collaboration Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany

Motivation

• Strong, attractive interaction between η -mesons and nuclei \rightarrow Possible formation of η -mesic nuclei

• Two possible ways to search for mesic nuclei

- \rightarrow Signal below threshold
- \rightarrow Pole near threshold influences cross section above it

• Good Candidate: ³He η system $ightarrow Q_0 pprox 0.3 \, {
m MeV}$

S-wave FSI-Ansatz

•
$$\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_s \cdot FSI|^2$$

with FSI = $\frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2}r_0 a p_f^2} = \frac{1}{(1 - p_f/p_1)(1 - p_f/p_2)}$

• Quasi-bound or virtual state?

 \rightarrow Study of A-dependency of the FSI important, especially the light nuclei

 \rightarrow **pn** \rightarrow **d** η ; pd \rightarrow ³He η ; dd \rightarrow ⁴He η ;...

 \rightarrow Gain insight in fundamental interaction between η mesons and nucle-

ANKE spectrometer

- ons

The reaction pn \rightarrow **d** η

- Investigated via $pd \rightarrow d\eta p_{sp}$
- Proton acts as spectator particle
- Two beam momenta ($p_1 = 2.09 \,\mathrm{GeV/c}$ and $p_2 = 2.25 \,\mathrm{GeV/c}$)
- ightarrow Data cover excess energies from threshold up to ${f Q}=90\,{
 m MeV}$
- Acceptance over the whole angular range

COSY – COoler SYnchrotron

• Provides (un)polarized proton or deuterium beams with momenta of up to 3.7 GeV/c [1]

ANKE– Apparatus for studies of Nucleon and Kaon Ejectiles

- Cluster-Jet Target serves as internal target
- Forward detector for heavy charged particles like protons, deuterons and He nuclei [2]
- Silicin Tracking Telescopes ("SST") for detection of spectator protons

• Exclusive measurement of meson production

[1] R. Maier, Nuclear Inst. and Methods in Physics Research, A, 1997, Vol.390(1) [2] S. Barsov, Nuclear Inst. and Methods in Physics Research, A, 2001, Vol.462

Particle identification

- Spectator proton in one of the STTs
- Reconstructed and identified via energy loss in two layers

• Deuteron momentum reconstructed via magnetic field

- am energy as if they happened at first one
- Subtraction results in peak at η-mass and shifted nega-

• Apply corrections due to acceptance, fermi motion ...

cluster-jet target (p,d) **MWPCs** STT

Summary & Outlook —

Summary

- ✓ Spectator protons and deuterons can be identified
- \checkmark Clear η signal in missing mass spectra
- ✓ Approximately 100k $pn \rightarrow d\eta$ events gathered

Outlook

- Determination of differential cross sections \rightarrow **Calculate** limit for s-wave FSI ansatz
- Luminosity

- Steep rise near threshold observed
- Fit data with s-wave FSI ansatz
- \rightarrow **Preliminary** absolute scattering length of $|\mathbf{a}| \approx 1.2 \,\mathrm{fm}$

→ Calculate scattering length **a**_{ηd} → Extract new information on $a_{\eta N}$ → Influence of N*(1535) at higher excess energies

