Polarised nucleon-nucleon scattering experiments at ANKE/COSY

David Mchedlishvili for the ANKE collaboration

IKP, Forschungszentrum Jülich HEPI, Tbilisi State University

July 12, 2013

Outline:

- Experimental facility (COSY, ANKE)
- o pp program
- o np program
- Extension of the np program at ANKE
- o Summary

3. Double polarised

Experimental facility: COSY storage ring

COSY (COoler SYnchrotron) at Jülich (Germany)

- Energy range:
 - 0.045 2.8 GeV (p)
 - 0.023 2.3 GeV (d)
- Max. momentum ~ 3.7 GeV/c
- Energy variation (ramping mode)
- Electron and Stochastic cooling
- Internal and external beams
- High polarisation (p,d)
- Spin manipulation

Apparatus: ANKE spectrometer

Main features:

- Excellent Kaon identification (Positive and Negative)
- Low energy proton (spectator) detection (STT)
- Di-proton ({pp}_s) selection (by FD)
- Polarized (unpolarized) dense targets

Polarised internal gas target at ANKE

- 1. Atomic Beam Source (ABS)
- 2. Lamb-shift Polarimetry
- 3. Cell: 20 x 15 x 370 mm³

Benefit from cell:

 Increased target density by factor of ≈100 (up to 10¹³ cm⁻²)

Drawback:

- I. Dedicated beam development
- II. Background handling
- III. Vertex reconstruction in analyses

pp Scattering data

Available data for Phase Shift Analyses (PSA)

- COSY-EDDA collaboration produced wealth of data (35°<θ_p<90°) for pp elastic scattering
- Large impact on PSA > 0.5 GeV: Significantly reduced ambiguities in I=1 phase shifts
- No exp. data at smaller angles (θ_p<35°) above T_p=1.0 GeV

F. Bauer et al., PRL 90, 142301 (2003) M. Altmeier et al., PRL 85, 1819 (2000)

0 [degrees CM]

np Scattering data

 Current experimental status of np data

our understanding of NN interaction

pp elastic scattering at ANKE: $d\sigma/d\Omega$

pp elastic scattering at ANKE: A_v

ANKE exp., April 2013, on-line (fast) analysis

- *A_y* for pp elastic (ANKE) at 6 beam energies: T_p = 0.8, 1.6, 1.8, 2.0, 2.2, 2.4
- FD and STT detection system is used Analysis in progress ...
- Beam polarization from EDDA
 <P_v> ≈ 50 to 65% (Preliminary)

ANKE data shows different shape compared with SAID predictions at higher energies !

np Scattering at ANKE

Deuteron break-up charge-exchange reaction

$$dp \rightarrow \{pp\}_{1_{S_0}} X$$

$$\cdot X = n \quad \square \qquad np \rightarrow pn$$

$$\bullet X = \Delta^0 \quad \square \qquad np \rightarrow p\Delta^0$$

$$p \qquad A^{\pi^* \qquad N}$$

$$d \qquad p \qquad A^{\pi^* \qquad N}$$

$$d \qquad p \qquad A^{\pi^* \qquad N}$$

David Mchedlishvili

Polarised nucleon-nucleon scattering experiments at ANKE/COSY

p

Impulse approximation

F.F. is evaluated with PARIS wave function

np charge-exchange amplitudes in cm:

$$f_{np} = \alpha + i\gamma(\mathbf{\sigma}_{n} + \mathbf{\sigma}_{p}) \cdot \mathbf{n} + \beta(\mathbf{\sigma}_{n} \cdot \mathbf{n})(\mathbf{\sigma}_{p} \cdot \mathbf{n}) + \delta(\mathbf{\sigma}_{n} \cdot \mathbf{m})(\mathbf{\sigma}_{p} \cdot \mathbf{m}) + \varepsilon(\mathbf{\sigma}_{n} \cdot \mathbf{l})(\mathbf{\sigma}_{p} \cdot \mathbf{l})$$

with basis vectors in terms of initial and final cm momenta **p** and **p**':

$$\mathbf{n} = \frac{\mathbf{p} \times \mathbf{p}'}{\left|\mathbf{p} \times \mathbf{p}'\right|}, \quad \mathbf{m} = \frac{\mathbf{p}' - \mathbf{p}}{\left|\mathbf{p}' - \mathbf{p}\right|}, \quad \mathbf{l} = \frac{\mathbf{p}' + \mathbf{p}}{\left|\mathbf{p}' + \mathbf{p}\right|}$$

$dp \rightarrow \{pp\}_{1_{S_0}} n$: Spin observables

Unpolarised intensity depends only upon spin-flip amplitudes:

 $I = |\beta|^{2} + |\gamma|^{2} + |\varepsilon|^{2} + |\delta|^{2} R^{2}$

Define a ratio of form factors by

$$R = S^{+}(k, \frac{1}{2}q) / S^{-}(k, \frac{1}{2}q)$$

Terms can be separated by measuring with polarized beams/targets:

David Mchedlishvili

dp experiments

Single polarised:

- Beam: Polarised deuterons at $T_d = \underline{1.2}$, 1.6, 1.8, 2.27 GeV
- Target: Unpolarised hydrogen cluster target
- Objectives: dσ/dq, A_{xx}, A_{yy}

- Beam: Polarised deuterons at $T_d = 1.2$, 2.27 GeV
- Target: Polarised hydrogen from ABS
- Objectives: A_y^{p} , $C_{x,x}$, $C_{y,y}$

Proof of principle at 1.17 GeV

$$\vec{d}p \rightarrow \{pp\}_s n$$

- Methodology is valid at $T_d = 1.17 \text{ GeV}$
- Application to higher energies $T_d=1.6$, 1.8, 2.27 GeV

Input for impulse approximation predictions: np charge-exchange amplitudes from current SAID solution at $T_n = 585 \text{ MeV}$

Beam-target polarimetry

Beam polarisation is measured at $T_d = 1.2 \text{ GeV}$ and "polarisation export" technique is applied at higher energies

- $\overrightarrow{np} \rightarrow d\pi^{\theta} \implies P_y, Q_y \text{ (SAID } A_y \text{ for } pp \rightarrow d\pi^+)$ $\overrightarrow{dp} \rightarrow \{pp\}_s n \implies P_{yy} (A_{xx}, A_{yy} \text{ from previous ANKE measurements})$

Normalised count ratio of $\vec{dp} \rightarrow \{pp\}_s n$ events for low excited pp pairs ($E_{pp} < 3 \text{ MeV}$):

$$\frac{N_{pol}(q,\varphi)}{N_0(q)} = 1 + \frac{1}{4} P_{yy}(A_{xx}(q)(1 - \cos 2\varphi) + A_{yy}(q)(1 + \cos 2\varphi))$$

Normalised count ratio of $np \rightarrow d\pi^{\theta}$ events:

•
$$\vec{dp} - \frac{N_{pol}(\vartheta, \varphi)}{N_0(\vartheta)} = 1 + P_y A_y^b(\vartheta) \cos \varphi$$

• $\vec{dp} - \frac{N_{pol}(\vartheta, \varphi)}{N_0(\vartheta)} = 1 + Q_y A_y^t(\vartheta) \cos \varphi$

P_z up to 70% **P**_{zz} up to 85% **Q**_v up to 79%

Luminosity

 $dp \rightarrow dp_{sp}\pi^0$ (quasi free $np \rightarrow d\pi^0$) reaction is used for the luminosity determination

$$L = \frac{R}{\sigma}$$
 where R , σ – count rate and cross section of the $np \rightarrow d\pi^0$ reaction

 $\frac{\sigma(pp \to d\pi^+)}{\sigma(np \to d\pi^0)} \approx 2$

Cross section for the $pp \rightarrow d\pi^+$ reaction is well known from SAID

Count rate corrections factors:

- DAQ dead time
- Trigger prescaling
- Track reconstruction and MWPC efficiency
- ANKE geometric acceptance

Single polarised data: $d\sigma/dq$, A_{xx} , A_{yy}

 $\vec{d}p \rightarrow \{pp\}_{s}n \ (E_{pp} < 3MeV)$

D.Mchedlishvili et al. EPJA, 49, 49 (2013)

David Mchedlishvili

Polarised nucleon-nucleon scattering experiments at ANKE/COSY

July 12, 2013

Background handling in double-polarised data

David Mchedlishvili

Double polarised data: A_{y}^{ρ} , $C_{y,y}$, $C_{x,x}$

July 12, 2013

Δ^{0} production in $dp \rightarrow \{pp\}_{s} \Delta^{0}$ reaction

Valuable information on the modelling of the $np \rightarrow p\Delta^0$ amplitudes

$dp \rightarrow \{pp\}_s \Delta^0$: cross section

Direct mechanism:

 Δ isobar direct production by the one pion exchange

Exchange mechanism:

 Δ isobar excites inside the projectile deuteron

- 1. Pion-nucleon are from different vertices
- 2. I=1/2 and I=3/2 both are allowed
- Direct one-pion-exchange works fine at high M_x
- Other mechanisms dominate near πN threshold Further theory work is needed !

Tensor analysing powers

Extension of np program in inverse kinematics (dp \Rightarrow pd)

Maximum COSY energy:

 $T_d = 2.3 \text{ GeV} (1.15 \text{ GeV per nucleon}) \text{ vs } T_p = 2.8 \text{ GeV}$

Polarised deuteron target commissioning (pd) in 2012
 (10 days of data taking)

- Unpolarised proton beam T_p = 600 MeV
- Polarised deuteron cell target, with vector and tensor polarisations.
- Solid state spectator detectors were involved to extend the ANKE capabilities.

Deuterium target polarimetry with $pd \rightarrow pd$

$$\overrightarrow{pd}$$
 at T_p = 600 MeV

- Deuterons are clearly identified in the STT, with almost no background
- Vector and tensor analysing powers are known

Achieved: Q_v , Q_{vv} up to 70% from the nominal

Deuteron breakup in inverse kinematics

 $p\vec{d} \rightarrow \{pp\}n \text{ at } T_p = 600 \text{ MeV}$

Two different region:

- 1. pp in same side of STT
- 2. pp in oposite side of STT

Σ

Tensor analysing powers in the $pd \rightarrow \{pp\}_s n$

 \overrightarrow{pd} at T_p = 600 MeV

Future studies

\vec{pd} experiment at ANKE:

- □ Polarised proton beam at 0.6, 1.135, 1.3 and 1.8 GeV
- Polarised deuterium target from the ABS

Primary aims:

- 1. Tensor analysing powers (A_{xx}, A_{yy}) and spin correlation parameters $(C_{x,x}, C_{y,y})$ in the $pd \rightarrow \{pp\}_s X$ reaction $(X=n, X=\Delta^0)$.
 - Opportunity to study the Δ polarisation by detecting the decay products in ANKE
- 2. Spin correlation parameters ($A_{x,x}$, $A_{y,y}$) for quasi-free pn elastic. Due to the Fermi motion, several energy intervals will be produced at given beam energy in the angular range 5° < θ_{cm} < 40°.

List of reactions fall in ANKE acceptance

- $pd \rightarrow \{pp\}_{s}n$: pp detected in the STT or in the ANKE FD
- $pd \rightarrow pd$: d detected in the STT (*small angles*) or in ANKE (*large angles*)
- $pd \rightarrow \{pp\}_s \Delta^0$: pp detected in the STT and Δ^0 decay products in ANKE
- $pd \rightarrow p_{sp}\{pp\}_{s}\pi^{-}$: pp detected in ANKE
- $pd \rightarrow n_{sp}d\pi^+$ and $pd \rightarrow p_{sp}d\pi^0$
- $pd \rightarrow p_{sp}dX$ (quasi free $pn \rightarrow dX$ including the isoscalar $\pi\pi$ system in the

final state): fast d detected in ANKE

Summary

✓ pp elastic:

- dσ/dΩ at T_p = 1.0, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8 GeV
- A_v at T_p = 0.8, 1.6, 1.8, 2.0, 2.2, 2.4 GeV

Analysis in progress...

✓ $dp \rightarrow \{pp\}_{s}n$ observables:

D.Mchedlishvili et al. EPJA, 49, 49 (2013)

- $d\sigma/dq$, A_{xx} , A_{yy} at $T_d = 1.2$, 1.6, 1.8, 2.27 GeV
- A_V^{p} , $C_{x,x}$, $C_{y,y}$ at $T_d = 1.2$, 2.27 GeV
- Corrections are needed for $\varepsilon(q)$ and $\gamma(q)$
- ✓ $dp \rightarrow \{pp\}_{s} \Delta^{0}$ observables: Accepted in PLB (arXiv:1305.5475 [nucl-ex])
 - dσ/dm, A_{xx}, A_{yy} at T_d = 1.6, 1.8, 2.27 GeV
 - More theoretical work is needed to explain differences from neutron channel

THANK YOU