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Mechanisms for the charge exchange reaction dp → {pp}sNπ, where {pp}s is the two-proton
system at low excitation energy Epp < 3 MeV, are studied at beam energies 1 – 2 GeV, with
focus on the invariant mass Mx of the final Nπ system corresponding to the formation of the
∆(1232)-isobar. We show that the direct mechanism for this reaction, with the initial proton being
excited to the ∆(1232), dominates and can explain qualitatively the existing data on the unpolarized
differential cross section at Mx > 1.2 GeV/c2. The contribution of the exchange mechanism, where
the ∆-excitation takes place on one of the nucleons inside the deuteron, is an order of magnitude
smaller and cannot explain the data at low Mx. The tensor analyzing powers Axx and Ayy are
estimated within the direct mechanism and found to be in strong disagreement with the preliminary
ANKE-COSY data at Mx > 1.2 GeV/c2.

PACS numbers: 25.10.+s, 25.40.Qa, 25.45.-z

Keywords: proton–deuteron collisions, ∆-isobar, spin observables

I. INTRODUCTION

The dp → {pp}sn reaction at very low transferred mo-
menta from the incident deuteron to the final di-proton
{pp}s allows one to study the spin-flip part of the nucleon-
nucleon (NN) charge-exchange forces [1, 2]. Here {pp}s is
a pp pair at low excitation energy, typicallyEpp < 3 MeV,
being predominantly in the 1S0 state. A recent review can
be found in Ref. [3]. A systematic experimental study
of this reaction is underway at ANKE@COSY in both
single- [4] and double-polarized [5] experiments. The
main goal of these experiments is to extend the existing
data set on proton-neutron scattering, which has been
much less well studied than proton-proton scattering.
In addition to data where there is a single missing neu-

tron in the reaction, there are variants where a pion is
also produced. The dp → {pp}snπ0 or dp → {pp}spπ−

allow one to study the spin-flip part of the ∆-excitation
amplitude in the pn → ∆+n transition, which is diffi-

cult to measure directly. The reaction ~dp → {pp}∆0 was
studied at SATURNE with a polarized deuteron beam at
the energy of 2 GeV [6, 7]. In addition to the differential
cross section, a linear combination of the tensor analyz-
ing powers Axx and Ayy was also measured and found to
be quite large.
A phenomenological impulse approximation analysis of

the SATURNE data was performed in order to deter-
mine the ratio of the strengths of the spin-transverse to
spin-longitudinal transitions [6]. The results obtained for
the analyzing powers suggest that there is a large trans-
verse component in the elementary ∆ production. On
the other hand, the spin-averaged cross section is well
described by one-pion exchange (OPE) [8] but this leads
to a purely longitudinal transition.
New data on the unpolarized cross sections for the re-

action ~dp → {pp}Nπ and also for tensor analyzing pow-

ers were recently obtained at ANKE@COSY at incident
deuteron energies from 1.6 to 2.3 GeV [9, 13]. It is impor-
tant to note that in the ANKE experiment the tensor an-
alyzing powers Axx and Ayy were determined separately.
An interesting point is that the measured Axx and Ayy

differ from the corresponding observables in the ordinary
dp → {pp}sn charge-exchange reaction in absolute value
as well as in sign.

The full set of data on the dp → {pp}sn reaction can be
well explained by the single-scattering mechanism with
the pn → np amplitude as input provided that one in-
cludes the pp final-state interaction in the 1S0 channel. It
is important to check whether the tensor analyzing pow-
ers of the dp → {pp}sNπ reaction can be explained within
the same mechanism which allowed one to describe the
unpolarized differential cross section. It is expected that
at low transferred momenta this reaction should be dom-
inated by the direct (D) one-pion exchange mechanism,
as depicted in Fig. 1a). The shape of the differential cross
section of the dp → {pp}sNπ reaction was calculated uti-
lizing this mechanism [13]. These estimates were based
on a modified formalism that was originally developed
for the p(3He, t)∆++ reaction [6]. It was found that this
mechanism explains well the shape of the measured spec-
tra at high missing masses, Mx ∼ 1.2−1.35 GeV/c2, but
fails at lower ones, Mx ∼ 1.1 − 1.2 GeV/c2. It was sug-
gested that this deficiency might be due to a missing
contribution, called here the exchange (E) contribution,
where the nucleon in the deuteron is excited into the ∆-
isobar (see Fig.1b). This mechanism was not considered
in Ref. [13]. However, it is taken into account in the
present work in addition to the D-mechanism. Further-
more, the pp (1S0) final-state interaction is also included.
For the elementary amplitudes pN → ∆N we use, not
only one-pion exchange, but also ρ-meson exchange and
the π + ρ interference.
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The expected results could also shed light on the long-
standing problem, the so-called T20 puzzle, in backward
pd elastic scattering and dp → pX break up in the ∆-
isobar region (see Ref. [10] and references therein).
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FIG. 1: Direct (a) and exchange (b) mechanisms with ∆-
isobar excitation for the reaction dp → {pp}sNπ.

II. UNPOLARIZED CROSS SECTION

We use the Feynmann diagram techniques for the
mechanisms depicted in Fig. 1. For the meson-baryon
vertices, we apply the formalism used in Ref. [11], where
exclusive data on the reaction pp → pnπ+ [12] were an-
alyzed in the ∆-isobar region and the cut-off parame-
ters at the π(ρ)NN - and π(ρ)N∆ vertices were deter-
mined through fits to data. Using phenomenological
Lagrangians LπNN , LρNN , LπN∆, LρN∆ [14] for the
meson-baryon vertices one has

< πN2|N1 > =
fπNN

mπ
ϕ+
1 (σQ)(τΦπ)ϕ22mN , (1)

< ρN2|N1 > =
fρNN

mρ
ϕ+
1 ([σ ×Q]ǫρ)(τΦρ)ϕ22mN ,

< πN |∆ > =
fπN∆

mπ
(Ψ+

∆Q
′

π)(TΦπ)ϕ
√
2mN2m∆,

< ρN |∆ > =
fρN∆

mρ
([Ψ+

∆ ×Q′

ρ]ǫρ)(TΦρ)ϕ
√
2mN2m∆,

where

fπNN = 1.00, fπN∆ = 2.15,

fρNN = 6.20, fρN∆ = 13.33. (2)

Here ϕi (i = 1, 2) is the Pauli spinor, Ψ∆ is the Rarita-
Schwinger spinor of the ∆−isobar in the static approx-
imation. These spinors describe the spin and isospin
states of the nucleon and ∆-isobar, respectively. Φπ

and Φρ are the isospin vectors of the π- and ρ-mesons,
ǫρ is the polarization vector of the ρ-meson, τ is the
Pauli isospin matrix. The isospin operator T is defined
in Ref. [15].
The momentum Q in Eq. (1) has the form

Q =

[

E1 +mN

E2 +mN

]1/2

p2 −
[

E2 +mN

E1 +mN

]1/2

p1 , (3)

where Ei =
√

p2i +m2
N (i = 1, 2). The quantity Q′

π

(Q′

ρ) is the 3-momentum of the π (ρ) meson in the ∆
rest frame.
The form factors at the π(ρ)NN , π(ρ)N∆ vertices are

assumed to be of monopole type,

Fπ(ρ)(k
2) =

Λ2 −m2
π(ρ)

Λ2 − k2
, (4)

where mπ (mρ) is the π (ρ) mass, k is the π (ρ) 4-
momentum, and Λ is the cut-off parameter. The q3-
dependence of the total width of the ∆-isobar on the
relative momentum q in the π+N system is taken into ac-
count. The transition form factor d → {pp}s is calculated
using the CD Bonn potential [16]. Appropriate isospin
factors were introduced for the two final π0n and π−p
channels for each mechanism. Preliminary results for the
unpolarized cross section were presented in Ref. [17].

FIG. 2: Differential cross section for the dp → {pp}sNπ
reaction versus the invariant mass of the π + N system,
Mx, at the beam energies Td = 1.6 GeV (upper panel) and
Td = 2.27 GeV (lower panel). Preliminary ANKE@COSY
missing-mass data [13] (◦) are compared with the results of
calculations based on the D-mechanism (solid line) and the
E-mechanism (dashed line) in the impulse approximation. At
2.27 GeV the results of the calculation are multiplied by the
factor 1/1.56.

Numerical results are presented in Fig. 2. These
indicate that the D-mechanism allows one to describe
the measured shapes of the dσ/dMx distribution for
Mx > 1.2 GeV/c2 at all the beam energies Td stud-
ied in Ref. [13], i.e. at 1.6, 1.8, and 2.27 GeV. With a
cut-off parameter Λ = 0.5 GeV the absolute values of
the cross section are also reasonably well described at
Mx > 1.2 GeV/c2 for Td = 1.6 and 1.8 GeV, while
for 2.27 GeV a normalization factor ≈ 1/1.56 is re-
quired. The discrepancy at the highest energy might
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be connected with the non-relativistic treatment of the
πN → ∆ → πN process, here one has to evaluate the
scalar product of the 3-momenta of the initial (k) and fi-
nal (k′) pions in the cms of the ∆-isobar, (k·k′). Another
possible origin of the normalisation factor is that the fit-
ting procedure in Ref. [11] was done at 0.8 GeV (which
is equivalent to a deuteron beam energy of 1.6 GeV) but
not at 1.15 GeV.
At lower masses, Mx < 1.2 GeV, the D-mechanism

fails to explain the measured cross section, as already re-
ported in Ref. [13]. The lack of strength at lowMx in this
case is associated with the p-wave nature of the ∆(1232)
isobar. The E-mechanism is calculated in a similar way.
Due to the spin-flip in the d → {pp}s transition, the vec-
tor product [k× k′] of the pion momenta survives in the
reaction amplitude. We found that the E-contribution
has a maximum at low masses, Mx ≈ 1.1 GeV, but
that its magnitude is much smaller than that of the D-
contribution (see the dashed line in Fig. 2). It there-
fore does not allow one to explain the observed shape
of the cross section dσ/dMx. The reasons for this small
size are (i) the smallness of the ∆ propagator for the E-
mechanism as compared to the D-mechanism and (ii) the
smallness of the vector product [k×k′] for the kinematics
of the E-mechanism as compared to the scalar product
(k · k′) for the one of the D-mechanism.
In order to check our calculation we evaluated, using

the same techniques and within almost the same kine-
matics, the cross section of the reaction dp → dX . In this
case the D-mechanism is forbidden by isospin though the
E-mechanism is allowed. We obtained reasonable agree-
ment with the data [18] for this reaction and also with
the model calculations given in that paper.

III. TENSOR ANALYZING POWERS

In the impulse approximation, the transition matrix
element for the direct mechanism of the dp → {pp}s∆0

reaction can be written as

Mfi = Ψ+
j (λ∆)(DπkjTi +DρMji)ei(λd)ϕp(σp). (5)

Here Ψ+
j is the vector-spinor of the ∆-isobar, ϕp is the

spinor of the initial proton, ei is the polarization vector
of the deuteron, λ∆, λd and σp are the spin projections of
the ∆, the deuteron, and the proton, respectively. Fur-
thermore, kj is the 3-momentum of the pion in the ∆-
isobar rest frame (j = x, y, z). The vector operator for
the pion exchange, Ti, has the form

Ti = (SS +
1

2
SD)Qi −

3√
2
SD(Q · n)ni , (6)

where SS(q) and SD(q) are the S- and D-wave transi-
tion form factors d → {pp}s at the 3-momentum transfer
q, with n being the unit vector along q. The momen-
tum Q in Eq. (6) is given by Eq. (3), where p1 (p2) is

the 3-momentum of the virtual proton (neutron) in the
diagram of Fig. 1a.
The ρ-meson exchange is described by the tensor Mji:

Mji = (SS +
1

2
SD)(Q ·Q′)

[

δji −QjQ
′

i

]

− 3√
2
SD

[

(Q ·Q′)nj − (Q′ · n)Qj

]

. (7)

Here Q′ is the momentum of the ρ-meson in the ∆-isobar
rest frame and Q is given by Eq. (3). The factors Dπ and
Dρ in Eq. (5) have the following forms

Dπ = 4
√
π
fπNN

mπ

fπN∆

mπ

FπNN (k2)FπN∆(k
2)

k2 −m2
π + iǫ

×NppCT 2mp
√
mp

√

2M∆ , (8)

Dρ = 4
√
π
fρNN

mρ

fρN∆

mρ

FρNN (k2)FρN∆(k2)

k2 −m2
ρ + iǫ

×NppCT 2mp
√
mp

√

2M∆ . (9)

Here CT =
√

2/3 is an isospin factor, Npp = 2 is a com-
binatorial factor appearing due to identity of two final
protons, and M∆ is the mass of the ∆-isobar.
The tensor analyzing power Aij is determined by

Aij = Tr{M P̂ijM
+}/T r{MM+} , (10)

where M is the transition operator given by Eq. (5),

P̂ij =
3
2 (ŜiŜj + ŜjŜi)− δij and Sl is the spin-one opera-

tor (i, j, l = x, y, z). To compare with the ANKE@COSY
experiment [13], we consider Axx and Ayy as functions
of the transverse component of the momentum transfer
qt. The OZ-axis is chosen along the deuteron beam mo-
mentum pd, OY along pd×ppp, and OX is taken so that
a right-handed coordinate system is formed. At a given
qt the experimental data are integrated over the invari-
ant mass of the undetected π +N system in the interval
Mx = 1.19−1.35 GeV [13], To simulate this we evaluate,
for example,

Axx = 1− 3

∫Mmax

x

Mmin
x

MαxM
+
αxdMx

∫Mmax
x

Mmin
x

MαiM
+
αidMx

. (11)

It is assumed here that repeated indices α and i (α, i =
x, y, z) are summed over. The analyzing powers Ayy and
Azz can be obtained from Eq. (11) by the replacements
x → y and x → z, respectively.
In the non-relativistic approximationQ = pp−pn = q.

Within this approximation one can find from Eq. (11) for
the one-pion exchange (ignoring the integration overMx)

Aπ
xx = 1− 3

q2x
q2

, Aπ
yy = 1− 3

q2y
q2

. (12)

Similarly, for pure ρ-meson exchange one has

Aρ
xx = −1

2
+ 3

q2x
2q2

, Aρ
yy = −1

2
+ 3

q2y
2q2

. (13)
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FIG. 3: Tensor analyzing powers Axx and Ayy versus the transverse component qt of the momentum transfer calculated for the
direct mechanism with π + ρ exchange at the deuteron beam energy 1.6 GeV (a,b) and 2.27 GeV (c,d). The integration over
the invariant mass Mx (cf. Eq. (11)) is performed for the interval 1.19 < Mx < 1.35 GeV/c2. The cut-off parameters used at
the vertices are: Λπ = 0.5 GeV, Λρ = 0.7 GeV (solid line); Λρ = 1.0 GeV (dashed line), Λρ = 1.3 (dash-dotted line).

Both these limits are in contradiction with the results
of the measurement [13], which yields Axx(qt = 0) =
Ayy(qt = 0) ≈ 0. Furthermore, for qy = 0 the calculated
Ayy does not depend on qt, for the OPE and for the ρ-
meson exchange mechanisms, whereas the experimental
data [13] exhibit a smooth qt dependence of Ayy.

The results of our numerical calculations for the π+ ρ
exchange are displayed in Fig. 3. For the cut-off param-
eters ΛπNN = ΛπN∆ = 0.5 GeV and ΛρNN = ΛρN∆ =
0.7 GeV [11] the ρ-meson exchange gives negligible con-
tribution. One can see from Fig. 3 that for these param-
eters Axx decreases with increasing qt from Axx = 1 at
qt = 0 to Axx ≈ 0.5 at qt = 0.2 MeV/c, whereas Ayy

is almost independent of qt and close to unity. This be-
haviour is only similar to the measurement [13] in so far
as the shape is concerned; it differs strongly in absolute
value. If the contribution of the ρ−meson exchange is
increased by raising the value of the cut-off parameter
ΛρNN = ΛρN∆ from 0.7 GeV to 1.3 GeV, Axx and Ayy

decrease but stay far away from the experimental data
Axx(0) = Ayy(0) ≈ 0.

IV. CONCLUSION

The direct mechanism of the dp → {pp}sNπ reac-
tion mediated by one-pion exchange and with cut-off
parameters at the πNN and πN∆ vertices fixed from
the fit to the pp → pnπ+ data at 0.8 GeV [12] allows

us to describe reasonably well the unpolarized differen-
tial cross section of the deuteron charge-exchange reac-
tion at beam energies 1.6 − 2.3 GeV (which is equiva-
lent to proton beam energies of 0.8− 1.15 GeV) at high
missing masses Mx = 1.2 − 1.35 GeV. At lower masses
Mx = 1.1−1.2 GeV this mechanism underestimates con-
siderably the cross section measured at ANKE [13]. We
find that the inclusion of the exchange mechanism does
not remedy the disagreement because its contribution is
an order of magnitude smaller than that of the direct
mechanism.

Regarding the tensor analyzing powers Axx and Ayy,
the direct mechanism fails completely to explain the
data of the ANKE collaboration [13], even in the region
Mx = 1.2− 1.35 GeV/c2. This disagreement persists for
the OPE and for ρ−meson exchange, and also for their
coherent sum. One should emphasize that a very simi-
lar problem, still unresolved, appears in the study of the
more complicated process of backward elastic pd scatter-
ing in the ∆-isobar region (see Ref. [10] and reference
therein).

It is possible that the interference of the direct and
exchange mechanisms might modify the behaviour of
the tensor analyzing powers Axx and Ayy while leaving
the unpolarized cross section unchanged. A proper
treatment of this interference requires one to consider
the three-body final states π0n{pp}s and π−p{pp}s
explicitly instead of the quasi-two-body state ∆0{pp}s.
However, in any case, this will not improve the situation
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at lower masses Mx < 1.2 GeV. Here the results obtained
suggest that new features have to be introduced into the
model in order to explain the experimental data on Axx

and Ayy together with the unpolarized cross section.
One might, for example, have to use the NN → N∆
amplitude beyond the Born approximation for the π + ρ
exchange.
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