C. Fritzsch[†], A. Khoukaz, M. Rump, and D. Schröer for the ANKE-Collaboration

The ANKE collaboration has performed a beam time to determine the η meson mass with high precision using the $d + p \rightarrow {}^{3}\text{He} + \eta$ reaction [1] and to study the two pion production using $d + p \rightarrow {}^{3}\text{He} + \pi^{+} + \pi^{-}$ [2]. In order to determine the η mass, data has been studied at 18 deuteron beam momenta in a range between 3120.17 MeV/ $c \leq p_d \leq$ 3204.16 MeV/c which could be extracted very accurately via the resonant depolarization technique with a precision of $\Delta p_d/p_d < 6 \times 10^{-5}$ [1, 3].

Moreover, due to the high statistics of more than $1 \times 10^5 {}^{3}$ He η events per energy in combination with full angular coverage these high precision ANKE data allow to investigate the total and differential cross sections of the reaction $d + p \rightarrow {}^{3}$ He $+ \eta$. Such data are of special interest since they differ strongly from a pure phase space behaviour near threshold. Furthermore, analysis of the asymmetry factor

$$\alpha = \frac{d}{d\cos\vartheta_{\eta}^{\text{CMS}}} \ln\left(\frac{d\sigma}{d\Omega}\right)_{\cos\vartheta_{n}^{\text{CMS}}=0}$$
(1)

of the differential cross sections show a distinct effect of sand p-wave interference with the η momentum, which can be explained by a rapid variation of the relative phase. These effects are an indication for an unexpected strong final state interaction (FSI) between η mesons and ³He nuclei which could lead to the formation of a quasi-bound state of the η^3 He-system [4, 5].

To extract total and differential cross sections of the η production channel $d + p \rightarrow {}^{3}\text{He} + \eta$ with high precision, a careful luminosity determination was performed for each of the 18 beam momenta of the beam time via dp-elastic scattering [6]. Thereby it was possible to achieve statistical uncertainties of $\Delta_{\text{stat}} = 1\%$ and systematic uncertainties of $\Delta_{\text{sys}} = 6\%$ which leads to an improvement by at least a factor of two compared to previous measurements.

Fig. 1:The two-dimensional distribution of the energy loss
information in the forward scintillator hodoscopes
of the first layer versus the particles laboratory mo-
mentum for a beam momentum of 3158.71 MeV/c.
A clear ³He band becomes visible consisting of the
single-, multi-pion, and η production.

Identification of the η production channel is achieved by detecting the ³He-nuclei in the ANKE Forward Detection

system ("FD system") with the calibrated energy loss information [7] in the scintillator hodoscopes. After cutting on the characteristical $\Delta E/p$ band of ³He-nuclei (cf. Figure 1), missing mass analyses show a distinct η signal for each beam momentum with more than 10^5 ³He η events per energy. The background description is done with data taken below the η production threshold at a beam momentum of 3120.17 MeV/*c*, therefore allowing a model independent approach. In order to do this, the subthreshold data will be analyzed with the desired laboratory momentum which leads to a shift of the kinematical limit in the missing mass spectra, using

$$\vec{p}_{\rm LS}^{\rm desired} = \frac{p_{\rm beam}^{\rm desired}}{p_{\rm beam}^{\rm subth.}} \cdot \vec{p}_{\rm beam}^{\rm subth.}$$
, (2)

and is then scaled to fit the data. After background subtraction a clear η peak is left (cf. Figure 2).

<u>Fig. 2:</u> Missing mass distribution of the events passing the energy loss selection cut for a beam momentum of 3158.71 MeV/c (blue) and for data taken below the η production threshold (red) as a model independent background description (see text for more detailed information). After background subtraction a clear η peak is left (shaded grey).

Due to the high statistics and the full geometric acceptance of ANKE, this analysis can be performed bin-wise over the entire angular range. An acceptance correction via Monte Carlo simulations is in progress, so that first results will be available soon.

References:

- [1] P. Goslawski et al., Phys. Rev.D 85, 112011 (2012).
- [2] M. Mielke *et al.*, Eur. Phys. J. A **50**, 102 (2014).
- [3] P. Goslawski *et al.*, Phys. Rev. ST-AB **13**, 022803 (2010).
- [4] T. Mersmann et al., Phys. Rev. Lett. 98, 242301 (2007).
- [5] C. Wilkin *et al.*, Phys. Lett. B **654**, 92 (2007).
- [6] C. Fritzsch, "Investigation of different normalization reactions for dp collisions at the ANKE experiment", Master thesis, (2014).
- [7] C. Fritzsch, "Energy calibration for the ANKE experiment", Bachelor thesis, (2011).

^{*}Supported by the COSY-FFE program of the Forschungszentrum Jülich †Institut für Kernphysik, WWU Münster, Germany