V. Shmakova^{1,2} and S. Dymov^{2,3} for the ANKE collaboration

The ANKE beam time in May-June 2011 was designed for the measurement of the transverse spin correlation $A_{x,x}$ in the $\vec{n}\vec{p} \rightarrow \{pp\}_s \pi^-$ reaction at 353 MeV [1]. However, as by-products from this double polarized experiment we could also investigate the spin-correlation coefficients $A_{x,x}$ and $A_{y,y}$ in the $\vec{n}\vec{p} \rightarrow d\pi^0$ reaction. In the experiment a vector polarized deuteron beam with kinetic energy 706 MeV interacted with an internal polarized hydrogen target. The $\vec{n}\vec{p} \rightarrow d\pi^0$ production was then studied in quasi-free kinematics using the data obtained on the $\vec{d}\vec{p} \rightarrow d\pi^0 p_{sp}$ reaction.

Fig. 1:Measured time of flight (TOF) difference for two
particles Δ_{TOF} versus the one calculated under as-
sumption that the detected particles were a proton and
deuteron ($\Delta \tau$).

The final deuteron and the (fast) spectator proton p_{sp} were detected in the ANKE Forward Detector (FD). The *pd* pairs were identified by the differences in their times of flight (TOF) [2]. Figure 1 shows the measured TOF difference plotted versus the TOF calculated under assumption that the detected particles were a proton and deuteron. Genuine *pd*-pairs are therefore to be found along the diagonal in this plot. Events corresponding to the $dp \rightarrow d\pi^0 p_{sp}$ reaction were selected from the pion peak in the missing-mass spectrum.

Fig. 2: The values of $A_{x,x}$ (left panel) and $A_{y,y}$ (right panel) measured in the $np \rightarrow d\pi^0$ at 353 MeV as a function of the pion polar angle θ_{π} . The results are compared with the SAID predictions [3].

In order to extract values of $A_{x,x}$ and $A_{y,y}$, the experimental

asymmetry was expressed in the form:

$$\xi = \frac{\Sigma_1 - \Sigma_2}{\Sigma_1 + \Sigma_2} = PQ(A_{x,x}\sin^2\phi_{\pi} + A_{y,y}\cos^2\phi_{\pi}), \qquad (1)$$

where ϕ_{π} is the azimuthal angle of the pion in the laboratory reference frame. The values of the beam and target polarization (P = 0.69 and Q = 0.5) were those obtained in an earlier analysis and we neglect the small P_z and Q_z components that may arise in a quasi-free measurement due to the Fermi motion in the deuteron. Here $\Sigma_1 = N_{\uparrow\uparrow} + N_{\downarrow\downarrow}$ and $\Sigma_2 = N_{\uparrow\downarrow} + N_{\downarrow\uparrow}$, where $N_{\uparrow\uparrow}$ etc. are the numbers of events with the beam and target spin directed as indicated by the arrows.

After evaluating the values of ξ/PQ for each pion c.m. polar angle θ_{π} bin, a linear fit in $\cos^2 \phi_{\pi}$ allowed the $A_{x,x}$ and $A_{y,y}$ coefficients to be extracted on the basis of Eq. (1).

<u>Fig. 3:</u> $A_{z,z}$ measured in the $np \rightarrow d\pi^0$ reaction at 353 MeV as a function of $cos^2\theta_{\pi}$ compared with the SAID predictions [3].

The results obtained for $A_{x,x}$ and $A_{y,y}$ are compared in Fig. 2 with the SAID predictions [3] for the isospin-related $\vec{p}\vec{p} \rightarrow d\pi^+$ reaction. Due to the fitting process, the measurements of $A_{x,x}$ and $A_{y,y}$ are strongly correlated. This is far less the case for $A_{z,z} = 1 + A_{x,x} + A_{y,y}$, which is largely independent of $A_{x,x} - A_{y,y}$. The fluctuations in this observable shown in Fig. 3 are therefore smaller.

References:

- [1] S. Dymov et al., COSY proposal #205 (2011),
- http://collaborations.fz-juelich.de/ikp/anke/proposals.shtml
- [2] S. Dymov et al., Phys. Rev. C 81, 044001 (2010).
- [3] SAID data base, http://gwdac.phys.gwu.edu.
- ¹ IKP, Forschungzentrum Jülich, 52425 Jülich, Germany
- ² LNP, JINR, 141980 Dubna, Russia
- ³ Phys. Inst. II, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- * Supported by the COSY-FFE program.