With the advent of chiral perturbation theory (χ PT), the lowenergy effective field theory of QCD, accurate calculations have become possible for hadronic reactions. The extension of the approach to pion production in nucleon-nucleon collisions requires new high precision experimental information in the near-threshold region.

Of especial interest are the processes $pp \rightarrow \{pp\}_s \pi^0$ and $pn \rightarrow \{pp\}_s \pi^-$, with the formation of a 1S_0 proton pair (diproton) in the final state. The measurements of $d\sigma/d\Omega$, A_y and the spin-correlation coefficients $A_{x,x}$ and $A_{x,z}$ will permit an amplitude analysis that should provide a non-trivial test of the χ PT predictions. A combined study of these processes will lead to the isolation of the Low Energy Constant (LEC) d of the $4N\pi$ contact operator in χ PT.

The ANKE spectrometer is particularly well suited for the study of reactions with a final diproton. The excellent resolution in the excitation energy of the proton pair, $\sigma_{E_{pp}} < 0.5$ MeV, allows one to select the range of low $E_{pp} < 3$ MeV. This ensures the dominance of the ¹S₀ state of the final proton pair. Single and double polarisation experiments can be conducted through the use of the polarised COSY beams and the ANKE polarised internal target.

As a first step in the proton–neutron programme, measurements with a polarised proton beam incident on an unpolarised deuterium cluster target were performed at ANKE in 2009 at a beam energy of $T_p = 353$ MeV.

Fig. 1: A_y in the $pn \rightarrow \{pp\}_s \pi^-$ reaction at T_n =353 MeV (blue squares). Also shown are the results of χPT calculation for d = 3 (red solid line), d = 0 (black dashed line), and d = -3 (magenta dot-dashed line). The data from TRIUMF are shown as black circles.

The results for the $pn \rightarrow \{pp\}_s \pi^-$ reaction are presented in Figs. 1 and 2. The ANKE data are shown together with the results from TRIUMF [H. Hahn *et al.*, Phys. Rev. Lett. **82** (1999) 2258] and compared to the prediction of the IKP theory group [V. Baru *et al.*, Phys. Rev. C **80** (2009) 044003].

The value of LEC d = 3 is favoured, though it must be stressed that the pion d-waves have not yet been included in the calculations.

The results were obtained with a 40 MeV wide range of effective beam energy in the free *pn*-scattering, *i.e.*, $T_{\text{free}} = 353 \pm 20$ MeV. The $E_{pp} < 3$ MeV cut was imposed on the data but, to facilitate the comparison with previous results, the cross section has been recalculated for the $E_{pp} < 1.5$ MeV cut used at TRIUMF. This was done using the Migdal-Watson approximation for the final state interaction in the ${}^{1}S_{0}$ proton pair. The main advantage of the ANKE measurement is the extended angular range compared to the pre-existing data.

Fig. 2: ANKE Preliminary results for the cross section of the $\vec{p}n \rightarrow \{pp\}_s \pi^-$ reaction at $T_n=353$ MeV in the $E_{pp} < 1.5$ MeV range. The conventions are the same as those used in the caption to Fig. 1.

The transitions involving the $4N\pi$ contact interaction correspond to the *p*-wave pion production in the $np \rightarrow \{pp\}_s \pi^$ reaction. The magnitude of one of the *p*-wave amplitudes is fixed completely by the measurement of $(1 - A_{x,x})d\sigma/d\Omega$ for $np \rightarrow \{pp\}_s\pi^-$. The double polarisation experiment for the measurement of $A_{x,x}$ and $A_{y,y}$, scheduled for 2011, will greatly improve our knowledge of the LEC *d*.

This experiment will provide the most systematics-free way to fix the value of *d*. At the same time, the magnitude of the other *p*-wave amplitude and its relative phase will be deduced from a combined analysis of these results with our cross section and analysing power data for $pp \rightarrow \{pp\}_s \pi^0$ and $np \rightarrow \{pp\}_s \pi^-$, which have already been taken. Two determinations of the LEC *d* will therefore be possible.