Vector analyzing power of the $\vec{p}p \to \{pp\}_s \pi^0$ reaction at intermediate energies at ANKE/COSY^{*}

D. Tsirkov^{1,2}, S. Dymov^{1,3}, V. Komarov¹, A. Kulikov¹, G. Macharashvili^{1,4} for the ANKE collaboration

A successful ChPT analysis of the $NN \rightarrow NN\pi$ processes involving relatively high momentum transfers has only been developed in recent years [1]. The theory involves a contribution in the effective chiral Lagrangian from a so-called $(\bar{N}N)^2\pi$ contact operator, the strength of which is denoted by a low energy contact parameter d, which must be determined from experimental data. A ChPT analysis is currently focused on a set of experimental data for $pn \rightarrow \{pp\}_s \pi^-$ reaction at 353 MeV, however, the contaminations in these processes from pion d-waves are not yet included [1]. Though $(\bar{N}N)^2\pi$ does not contribute to the $pp \rightarrow \{pp\}_s \pi^0$ amplitude, the π^0 production data will provide information on the pion d-waves. It was one of the main aims for the present A_y measurement at 353 MeV.

At higher energies, in the $\Delta(1232)$ resonance region, the reaction $pp \rightarrow \{pp\}_s \pi^0$ was studied for the first time at ANKE [2]. The experiment revealed a wide peak in the energy dependence of the cross section at small angles. A consistent picture of the process is still lacking, so we have performed measurements of the cross section and A_y in the energy region 500–700 MeV where the forward cross section is maximal.

Measurements were performed in April 2009 with the ANKE spectrometer [3] at COSY-Jülich. The transversely polarized proton beam, with energies $T_p = 353$, 500, 550 and 700 MeV, interacted with the hydrogen cluster-jet target. The setup and procedure for data handling are described in detail in [2].

To start to identify the $pp \rightarrow \{pp\}_s \pi^0$ reaction, proton pairs were selected from all the registered two-track events, using the measured momenta of the both particles and their time-of-flight difference [4]. Then we applied the cut $E_{pp} < 3$ MeV to identify pairs where the 1S_0 state dominates.

We can reconstruct the kinematics of the $pp \rightarrow \{pp\}_s X$ process event-by-event and obtain a missing-mass spectrum. The main sources of the background are random coincidences and a signal from the $pp \rightarrow \{pp\}_s \gamma$ channel. To find the numbers of $\{pp\}_s \pi^0$ events, we fitted the M_X^2 distributions by the sum of a linear accidental background and simulated peak shapes for γ and π^0 [4]. The polarization asymmetry is given by

$$\varepsilon = \frac{N_{\uparrow}/L_{\uparrow} - N_{\downarrow}/L_{\downarrow}}{N_{\uparrow}/L_{\uparrow} + N_{\downarrow}/L_{\downarrow}}$$

The analyzing power A_y is connected to it through:

$$A_y = \frac{\varepsilon}{P \left< \cos \phi_{pp}^{\rm cm} \right>} \,.$$

Since the $\cos \phi_{pp}^{\rm cm}$ acceptance is concentrated near 1, essentially all the statistics collected effectively contribute to A_y .

The polarization P of the beam was evaluated using the $pp \rightarrow pp$ and $pp \rightarrow d\pi^+$ reactions detected in parallel. The two methods agreed within measurement errors and resulted in an average $P = 0.67 \pm 0.01$.

In 353 MeV case, if only waves up to $\ell = 2$ are retained, A_y must originate from a Ss:Sd interference. The cross

Fig. 1: Preliminary values of A_y for the $\vec{p}p \rightarrow \{pp\}_s \pi^0$ reaction at all the measured energies. The errors shown are purely statistical; the overall systematic uncertainty from the beam polarization and luminosity is about 3%. The angular uncertainty is about 5° near 90° at 353 MeV and less than 1.5° at other energies. The dash-dotted line represents the fit using CELSIUS data for the cross section [5]. The dashed line corresponds to the predictions by Niskanen [6, 7].

section can be described with $a + b \cos^2 \theta_{pp}^{\rm cm}$ [8]. Interpolating the CELSIUS data [5] gives the values of $a = 204\pm10$ nb/sr and $b = -112\pm23$ nb/sr. Then fitting the A_y distribution with

$$A_y = \frac{c\sin 2\theta_{pp}^{\rm cm}}{a + b\cos^2\theta_{pp}^{\rm cm}} \ [8]$$

leads to $c = 48\pm4$ nb/sr. When the results of the full model [1] are available, the current data will provide a valuable test of the theoretical approach.

In the $\Delta(1232)$ region, the small angle predictions of the Niskanen model [7] approach the data at 500 MeV but are in full disagreement at 700 MeV. The reason for the disagreement in respect of both the cross section [2, 6] and analyzing power is unclear.

In order to improve the results, the setup geometry will be defined more precisely, reducing the angular uncertainty at 353 MeV from 5° to $\approx 2^{\circ}$. The systematic uncertainties will also be reduced by applying more precise dead-time and luminosity corrections.

References:

- [1] V. Baru *et al.*, Phys. Rev. C **80** 044003 (2009).
- [2] V. Kurbatov *et al.*, Phys. Lett. B **661** 22 (2008).
- [3] S. Barsov *et al.*, Nucl. Instrum. Methods Phys. Res. A **462** 354 (2001).
- [4] D. Tsirkov et al., J. Phys. G **37** 105005 (2010).
- [5] R. Bilger *et al.*, Nucl. Phys. A **693** 633 (2001).
- [6] J. A. Niskanen, Phys. Lett. B 642 34 (2006).
- [7] J. A. Niskanen, private communication (2008).
- [8] C. Hanhart, Phys. Rep. **397** 155 (2004).
- ¹ LNP JINR, RU-141980 Dubna, Russia
- ² IKP FZJ, D-52425 Jülich, Germany
- ³ Phys. Inst. II, UEN, D-91058 Erlangen, Germany
- ⁴ HEPI TSU, GE-0186 Tbilisi, Georgia
- * supported by COSY-FFE