Deuteron breakup $p + d \rightarrow \{pp\}_s + n$ at GeV energies with forward emission of the $\{pp\}_s$ diproton

V. Komarov¹, T. Azaryan¹, S. Dymov^{1,2}, A. Kulikov¹, V. Kurbatov¹,

G. Macharashvili¹, S. Merzliakov^{1,2}, D. Tsyrkov^{1,2}, Yu. Uzikov¹, B. Zalikhanov¹ for the ANKE collaboration.

Study of the deuteron breakup $pd \rightarrow \{pp\}_s n$ with forward emission of a fast proton pair $\{pp\}_s$ with small excitation energy $E_{pp} < 3$ MeV has been performed in the T_p =0.5–1.97 GeV beam energy range using the ANKE spectrometer. In kinematically complete experiment with higher than in [1] statistics the E_{pp} spectra, the θ_k angular distribution of the proton momentum in the pair c.m.s., and the distribution of the neutron emission angle in the range $\theta_n = 168 - 180^{\circ}$ were measured. The E_{pp} spectra essentially differ from the phase space distributions but, as expected, are well described (Fig. 1) within the Migdal-Watson approach of the ${}^{1}S_{0}$ final state interaction of the protons in a pair (except for 1.97 GeV where both descriptions fail). The proton angle θ_k is distributed isotropically, also consistent with the 1S_0 state of the pair. The θ_n distribution is non-isotropic and T_p energy dependent (Fig. 2); this might be a reflection of the fact that contributions of different mechanisms crucially change with energy as predicted by the ONE+SS+ Δ model [2]. The differential cross section $d\sigma/d\Omega$ at $\theta_n = 180^\circ$ follows an exponential drop with T_p energy in the range 0.5-1.4 GeV but significantly deviates from this dependence at 1.97 GeV (Fig. 3). Such a change of the regime is similar to that observed for the $pd \rightarrow dp$ backward elastic scattering [3] where flattening of the energy dependence is observed at 2.0–2.5 GeV.

The one-pion exchange (OPE) mechanism together with the one-nucleon exchange (ONE) contribution were used recently [4] for description of the energy dependence of the differential cross section averaged over the 8° angular interval around 180° obtained in our earlier measurements [1]. The model qualitatively describes also the entire set of the data.

Fig. 1:Spectra of the kinetic energy E_{pp} in c.m.s. of the
proton pair. Solid line corresponds to the Migdal-
Watson approach, dotted line is the phase space
distribution.

References:

 $\label{eq:Fig.2:Dependence} \frac{\mbox{Fig. 2:}}{\mbox{the neutron emission angle in c.m.s. of the reaction.}}$

Fig. 3:Energy dependence of the differential cross sections of the $pd \rightarrow \{pp\}_s n$ and $pd \rightarrow dp$ processes at $\theta_n = 180^\circ$. Full circles: present experiment; the $pd \rightarrow dp$ data: from [3] and refs. therein.

- [2] O.Imambekov and Yu.N.Uzikov, Sov.J.Nucl.Phys. 52 (1990) 862.
- [3] P.Berthet et al., J.Phys.G: Nucl.Phys. 8 (1982) L111.
- [4] Yu.Uzikov, J.Haidenbauer, C.Wilkin, Phys.Rev. C75 (2007) 014008.
- ¹ LNP, JINR, 141980 Dubna, Russia
- ² IKP Forschungszentrum Jülich

[1] V.Komarov et al., Phys.Lett. B553 (2003) 179.