S. Dymov^{a,b}, A. Kacharava^a, V. Komarov^b, A. Kulikov^b, V. Kurbatov^b, G. Macharashvili^{b,c}, F. Rathmann^a, H. Ströher^a, Yu. Uzikov^b, C. Wilkin^d for the **ANKE** Collaboration

The ABC effect, which is a enhancement of the two-pion invariant mass spectrum near its threshold, has presented a puzzle for hadron physicists for almost fifty years. It was first observed in a $pd \rightarrow {}^{3}$ HeX missing-mass experiment [1] and further confirmed in other reactions.

The aim of the experiment carried out with the ANKE setup was the study of the $pp \rightarrow \{pp\}_s X$ reaction under the condition that the excitation energy in the final diproton system is low, $E_{pp} < 3$ MeV. The experiment has been set up to investigate the reaction at four proton beam energies $T_p = 0.8, 1.1, 1.4, \text{ and } 2 \text{ GeV}.$

The proton beam was directed onto a hydrogen cluster jet target with an areal density of $2 \cdot 10^{14} at oms/cm^2$. Positively charged particles were registered in the forward detectors of ANKE setup. Particle momenta were reconstructed by the back-tracing Runge-Kutta method through the analysing magnetic field. The momentum reconstruction uncertainty is equal to 1% on average [2]. Proton-pairs were identified by the time-of-flight difference Δt measured by the hodoscope and the same difference calculated using the reconstructed particle momenta assuming proton masses. The remaining background does not exceed 0.1%.

<u>Fig. 1:</u> Distribution in missing-mass squared for the $pp \rightarrow \{pp\}_s X$ reaction for $E_{pp} < 3$ MeV and $\cos \vartheta_{pp} > 0.95$ at a) 0.8, b) 1.1, c) 1.4, and d) 2.0 GeV. The η signal is seen at the expected position for the two higher energies. The lines represent normalized simulations within a phase-space model.

Fig.1 shows the pp-system missing-mass squared distribution for the multipion region at different beam energies. Two protons in the relative ${}^{1}S_{o}$ state were selected by applying the cut on the excitation energy $E_{pp} < 3MeV$. The selected proton pairs weighted by the detection efficiency are distributed isotropically in the pair rest system which reveals that they actually are in the ${}^{1}S_{o}$ state. Event distribution over the two proton excitation energy E_{pp} also clearly shows the *final state interaction* enhancement corresponding to the ${}^{1}S_{o}$ state. The events in the forward cone with $cos\vartheta_{pp} > 0.95$ were selected for the further analysis.

Only at the highest energy 2 GeV there might be any sig-

<u>Fig. 2:</u> The $pp \rightarrow ppX$ differential cross section with statistical errors as a function of the square of the missing mass at a) 0.8, b) 1.1, c) 1.4, and d) 2.0 GeV for $E_{pp} < 3$ MeV and $\cos \vartheta_{pp} > 0.95$. The η peaks are indicated. Events were simulated using Eq. (1) with $A_D = 0$ (long dashes), with $A_S = 0$ (short-dashed), and with the best fit of A_S/A_D ratio (solid line).

nificant contribution of three-pion production while at the lower energies it is negligible. Therefore, the model description should be based upon the assumption that two-pion production dominates.

Fig.2 shows the measured differential cross sections and the results of implementing a simple double– Δ model. The matrix element squared (averaged over the pion angles) for this model can be written in the form

$$\langle |\mathcal{M}|^2 \rangle = |A_S(\alpha^2 k^2 - \beta^2 q^2) + \frac{1}{2} A_D \alpha^2 (3k_z^2 - k^2)|^2 + \frac{1}{5} |A_D|^2 \beta^4 q^4.$$
(1)

where α and β are the kinematical factors, q is the $\pi\pi$ pair momentum in c.m.s, and k pion momenta in the $\pi\pi$ system. The *S* and *D*-wave amplitudes A_S and A_D are scalar functions that may depend upon T_p .

We have measured the differential cross section for the $pp \rightarrow \{pp\}_s(\pi\pi)^o$ reaction at four beam energies from 0.8 to 2.0 GeV under conditions mentioned above. Strong structure is observed in the missing-mass variable, with a peak in M_x whose position varies with beam energy. Gross structure of the distributions is well described within the $\Delta\Delta$ model. Exclusive measurements of $pp \rightarrow \{pp\}_s(\pi\pi)^0$ over a wider range of angles would provide more stringent tests of the phenomenological description.

References:

- [1] A. Abashian et al., Phys.Rev.Lett. 5, 258 (1960).
- [2] S. Dymov et al., Part. Nucl. Lett. 2 (119), 40 (2004).
- ^a IKP, FZ-Juelich, Germany
- ^b JINR, Dubna, Russia
- ^c Tbilisi State University, Tbilisi, Georgia
- ^d University College, London, UK