A. Dzyuba^{*a,b*}, M. Büscher^{*b*}, M. Hartmann^{*b*}, V. Koptev^{*a*}, Y. Maeda^{*c*}, and C. Wilkin^{*d*} for the ANKE collaboration

Measurements of the $pp \rightarrow ppK^+K^-$ reaction at both COSY-11 and ANKE [1] have shown that the interaction of the K^- with the final protons is much stronger than that of the K^+ . Thus, if we define the ratio of the acceptance– corrected distributions in the Kp invariant masses $R_{Kp} = [d\sigma/dM(K^-p)]/[d\sigma/dM(K^+p)]$, then this shows a very strong preference for low values of M(Kp) provided that the invariant mass of the K^+K^- is chosen to be away from the region of the ϕ peak. The three-particle invariant-mass distribution ratio R_{Kpp} shows same behaviour.

Fig. 1: Ratios of the differential cross sections for the $pp \rightarrow ppK^+K^$ reaction at $Q_{K\bar{K}} = 51 \text{ MeV}$ away from the $\phi(1020)$ region. Experimental data (red) are compared to a Monte Carlo simulation (blue).

The magnitude and mass dependence of both the R_{Kp} and R_{Kpp} ratios can be described quantitatively at all the COSY-11 and ANKE energies by assuming that there are overlapping final state interactions (*fsi*) between the *pp* and both K^-p pairs. Within the framework of this simple *ansatz*, the only free parameter is an effective K^-p scattering length of $|a_{\bar{K}p}| = 1.5$ fm.

Although the above *ansatz* describes the vast bulk of all the available data, there is evidence of $K\bar{K}$ *fsi* at very low K^+K^- invariant masses for all beam energies. This is shown clearly in Fig. 2 where, to increase the limited statistics, the average of the ratio of the experimental data to the simulation involving just the K^-p and pp *fsi* is compared to fits that include both K^+K^- plus a charge exchange contribution, where a $K^0\bar{K}^0$ pair is converted into K^+K^- through a *fsi* [2].

Detailed investigation of this coupled channel effect allows to extract ratio of the B_0 and B_1 — the $pp \rightarrow ppK\bar{K}$ amplitudes for producing *s*-wave $K\bar{K}$ pairs in isospin-0 and 1 states, respectively. These amplitudes, which already include the *fsi* in the K^-p and pp channels, are then distorted through a *fsi* corresponding to elastic scattering. The subsequent fitting of the data is best achieved with $|B_1/B_0|^2 = 0.38^{+0.24}_{-0.14}$.

Since the antikaon is so strongly attracted to the proton, it is interesting to investigate its interaction with nuclei. For the simplest of nuclei, this is possible by using the $pp \rightarrow dK^+\bar{K}^0$ reaction, which has been recently reanalysed [3]. Similar effects to those observed in the $pp \rightarrow ppK^+K^-$ case are also seen here, with the strong tendency for the \bar{K}^0d invariant mass to be lower than that of the K^+d system, as illustrated in Fig. 3.

The analysis is complicated for this reaction by the spinparity requirement that even near threshold one of the final particles must be in a *P*-wave. The data show that this is over-

Fig. 2: Ratio of the K^+K^- invariant mass spectra from the $pp \rightarrow ppK^+K^$ reaction to the simulation presented in Ref. [1]. The experimental points correspond to the weighted average of ANKE data taken at 2.65, 2.70, and 2.83 GeV. The solid curve includes both K^+K^- fsi and charge exchange $K^0\bar{K}^0 \rightarrow K^+K^-$ contributions.

whelmingly the K^+ , with the $\bar{K}^0 d$ being in an *S*-wave. Such a difference would come about through a strong $\bar{K} d$ attraction. A combined fit to the two data sets with the inclusion of final-state interactions in both the $K^+\bar{K}^0$ and $\bar{K}^0 d$ systems has been done. The data is well discribed by the wide $a_0^+(980)$ -resonance and $\bar{K}^0 d$ fsi with typical value of $a_{\bar{K}d} \approx (-1.0 + i1.2)$ fm.

Fig. 3: Ratio of the differential cross section for the $pp \rightarrow dK^+\bar{K}^0$ reaction at an excess energy of 104.7 MeV in terms of the $\bar{K}^0 d$ and $K^+ d$ invariant masses. The dashed curve represents the best fit to the data [3].

The natural continuation of the ANKE programme to study the antikaon-nucleon/nucleus interaction will be to measure the cross section for $pd \rightarrow {}^{3}\text{He}K^{+}K^{-}$ to investigate the ${}^{3}\text{He}K^{-}$ system.

References:

- [1] Y. Maeda et al., Phys. Rev. C 77 (2008) 015204.
- [2] A. Dzyuba et al., Phys. Lett. B 668 (2008) 315.
- [3] A. Dzyuba et al., Eur. Phys. J. A 38 (2008) 1.
- ^a Petersburg Nuclear Physics Institute, Russia
- ^b IKP and JCHP, FZJ, Germany
- ^c Osaka University, Japan
- ^d University College London, U.K.
- * supported by COSY-FFE programm