The K^{-3} He scattering length and the reaction $pd \rightarrow {}^{3}$ He $K^{+}K^{-}$ near threshold

V. Yu. Grishina^{*a*}, M. Büscher, L.A. Kondratyuk^{*b*} and C. Wilkin^{*c*}

In a recent paper [1], we presented an estimation of the s-wave $K^-\alpha$ scattering length $A(K^-\alpha)$ obtained within the Multiple Scattering Approach. We further discussed the possibility of determining $A(K^-\alpha)$ from the $K^-\alpha$ invariant mass distribution measured in the reaction $dd \rightarrow \alpha K^+ K^-$ near threshold. Here we show the results of similar calculations for $A(K^{-3}\text{He})$ (see also Ref. [2].) In Table 1 the predictions of $A(K^{-3}\text{He})$ are given for different $\bar{K}N$ inputs. These are taken from a K-matrix fit (Set 1) [3], a constant scattering-length fit (Set 2) [4], and a chiral unitary approach (Set 3) [5].

<u>Table 1:</u> The K^{-3} He scattering length for different $\bar{K}N$ scattering lengths $a_I(\bar{K}N)$ (I = 0, 1).

Ref.	$a_0(\bar{K}N)$ [fm]	$a_1(\bar{K}N)$ [fm]	$A(K^{-3}\text{He})[\text{fm}]$
[3]	-1.59 + i0.76	0.26 + i0.57	-1.50 + i0.83
[4]	-1.03 + i0.95	0.94 + i0.72	-1.52 + i1.80
[5]	-1.31 + i1.24	0.26 + i0.66	-1.66 + i1.10
[6]	2.88 + i1.12	0.43 + i0.30	-3.93 + i4.03

We note that the $\bar{K}N$ scattering lengths described by Sets 1-3 correspond to their vacuum values. In order to demonstrate the sensitivity of our results to possible modifications of the $\bar{K}N$ scattering amplitudes in the presence of nuclear matter, we consider as Set 4 the strongly attractive in-medium solution found in Ref. [6] and given by

$$a_0^{\text{eff}} = (2.9 + i1.1) \,\text{fm}, \quad a_1^{\text{eff}} = (0.43 + i0.30) \,\text{fm}.$$

The results of our calculations are listed in the last column of Table 1. The values are very similar for Sets 1 and 3, being in the range $A(K^{-3}\text{He}) = -(1.5 \div 1.7) + i(0.83 \div 1.1)$ fm. Set 2 gives a much larger imaginary part, with $A(K^{-3}\text{He}) = -1.52 + i1.80$ fm. The "exotic" Set 4 leads to a very large $K^{-3}\text{He}$ scattering length, with a real part of -4 fm.

We now consider the K^{-3} He FSI effect in the reaction $pd \to K^+K^{-3}$ He near threshold. In Fig. 1 we present calculations of the K^3 He relative energy spectrum at an excess energy of 40 MeV. The solid line shows the calculations for pure phase space, *i.e.* for a constant production amplitude and neglecting FSI. All other lines in the figure represent the results obtained using the different sets of K^-N parameters given in Table 1. The predictions are normalized to the total $pd \to K^+K^{-3}$ He cross section of 9.3 nb. It is clear that the FSI can change significantly the K^3 He mass spectrum. The blue line corresponding to Set 4, which demonstrates a very pronounced deformation of the K^3 He invariant mass spectrum in the region of small invariant masses, is in clear contradiction to the data.

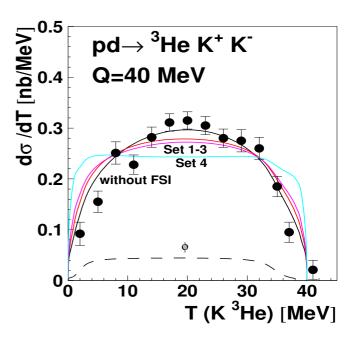


Fig. 1:Distribution of K^3 He relative energies from
the $pd \rightarrow {}^3\text{He}\,K^+K^-$ reaction at 40 MeV.
The MOMO experimental data are taken from
Refs. [7, 8]. The model predictions (lines) are
symmetric around T = 20 MeV since the MOMO
experiment was insensitive to the signs of the
kaon charges. The $\phi(1020)$ resonance, whose effects are shown by the dashed line, contributes
about 15% to the total rate.

References:

- [1] V.Yu. Grishina et al., Eur. Phys. J. A 25 (2005) 159.
- [2] L. Kondratyuk, V. Grishina and M. Büscher, Proc. of STORI2005, Schriften des Forschungszentrums Jülich, **30** (2005) 165 [arXiv:nucl-th/0507021].
- [3] R. C. Barrett and A. Deloff, Phys. Rev. C 60 (1999) 025201.
- [4] J.E. Conboy, Rutherford-Appleton Lab. Report, RAL-85-091 (1985).
- [5] J.A. Oller and U.-G. Meißner, Phys. Lett. B 500 (2001) 263.
- [6] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65 (2002) 044005.
- [7] H.A. Schitker, "Zwei-Kaonen-Produktion nahe der Schwelle in der Reaktion pd → ³He K⁺K⁻ mit dem Experiment MOMO an COSY", Dissertation Univ. Bonn (2002).
- [8] F. Bellemann et al., IKP Annual Report 2000, p. 63.

 a INR, Moscow, Russia

^bITEP, Moscow, Russia

^cPhysics & Astronomy Dept., UCL, London, UK

*Supported by DFG and RFFI. V.Yu.G. acknowledges the financial support from the FZJ (FFE grant 41520739(COSY-071)).