A.Dzyuba^a, M.Büscher, C.Hanhart, V.Kleber^b, V.Koptev^a, M.Nekipelov, A.Sibirtsev

The production of the light scalar resonances $a_0(980)$ and $f_0(980)$ in hadronic interactions is under investigation at the ANKE spectrometer, where their strange decays into $K\bar{K}$ can be observed. Final goal of these studies, which will be later supplemented by measurements of the non-strange decays with the WASA detector, is to learn about the nature of these states, about isospin violating processes in the a_0/f_0 system and FSI effects between antikaons and light nuclei.

The first two experiments on $a_0^+(980)$ production (where contributions of the $f_0(980)$ must be absent) have been performed in pp collisions at $T_p = 2.65$ GeV (2001) [1] and $T_p = 2.83$ GeV (2002). Events of the type $pp \rightarrow dK^+X$ have been measured at ANKE, identifying the \bar{K}^0 by a missing-mass criterion. Contaminations from misidentified events are smaller than 10%.

Due to a large number of zero elements in the acceptance matrices [2] for the higher beam energy, it is impossible to follow the model independent acceptance correction procedure which has been used for the $T_p = 2.65$ GeV data [1].

However, in the close-to-threshold regime only a limited number of final states can contribute. Thus, for the data analysis we have restricted ourselves to the lowest allowed partial waves, *i.e. s*-wave in the $K\bar{K}$ system accompanied by a *p*-wave of the deuteron with respect to the meson pair $(a_0^+(980)$ -channel) and *p*-wave $K\bar{K}$ production with an *s*-wave deuteron (non-resonant prod.) [1]. With this assumption the data at $T_p = 2.65$ GeV are well explained. The square of the transition matrix element can then be written as

$$\begin{split} \bar{\mathcal{M}} \,|^2 &= C_0^q q^2 + C_0^k k^2 + C_1 (\hat{p} \cdot \vec{k})^2 + C_2 (\hat{p} \cdot \vec{q})^2 + \\ &+ C_3 (\vec{k} \cdot \vec{q}) + C_4 (\hat{p} \cdot \vec{k}) (\hat{p} \cdot \vec{q}) \;. \end{split}$$
(1)

Here k is deuteron momentum in the overall CMS, \vec{q} denotes the momentum of the K^+ in the $K\bar{K}$ system, and \hat{p} is the unit vector parallel to the beam direction. Only $K\bar{K}$ *p*-waves contribute to C_0^q and C_2 , only $K\bar{K}$ *s*-waves contribute to C_0^k and C_1 , and only $s \cdot p$ interference terms to C_3 and C_4 . In order to determine the coefficients C_i , fits of the uncorrected (to acceptance) distributions have been made using GEANT simulated data samples, varying C_i . The best fit results are displayed in Fig. 1 for two measured invariant-mass and four angular distributions. The fit reveals dominance of $K\bar{K}$ *s*wave production (*i.e.* the $a_0^+(980)$ -channel) for both beam energies, see Table 1.

Table 1: Quality and results of the fit.

T_p	2.65 GeV	2.83 GeV
χ^2/ndf	1.4	1.1
K k s-wave	95%	88%
$K\bar{K} p$ -wave	5%	12%

The results for the data at $T_p = 2.65$ GeV are consistent with the published data where a different method of acceptance correction has been applied.

Having determined the coefficients C_i one can simulate differential distributions at the target, track the events through the ANKE setup and, thus, determine the differential acceptances as a function of the kinematical variables displayed in Fig. 1. Knowing these acceptances, differential cross sections can be extracted from the data which are shown in Fig. 2.

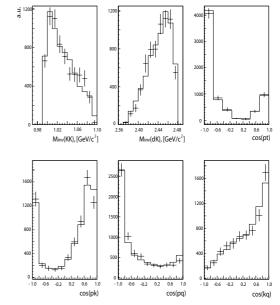


Fig. 1: Best fit of acceptance uncorrected data at $T_p = 2.83$ GeV. Cos(*pt*) is the angle between the K^+ momentum, measured in the CMS, and the beam proton; all other angles are described in the text.

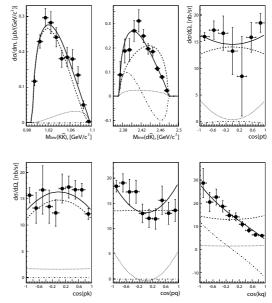


Fig. 2: Angular and invariant mass distributions for $T_p = 2.83$ GeV. The dashed (dotted) line corresponds to $K\bar{K}$ production in a relative s- (p-)wave, the dash-dotted to the interference term and solid line is the sum of them.

References:

- [1] V.Kleber et al., Phys. Rev. Lett., **91**, 172304 (2003)
- [2] M.Büscher et al., IKP Annual Report 2004.
- ^a PNPI, Gatchina, Russia, ^b PI, Universität Bonn
- * supported by DFG, RFFI, COSY-FFE program