Y. Valdau, M. Büscher, V. Koptev^a, M. Nekipelov

Experimental data on the K^+ -production cross section from *pn* interactions in the close-to-threshold regime are not available yet. This quantity is, for example, crucial for the theoretical description of *pA* and *AA* data since it has to be used as an input parameter for corresponding model calculations, like transport codes see, e.g. Ref. [1]. Predictions for the ratio σ_n/σ_p range from one to six, depending on the underlying model assumptions: in Ref. [2] it has been proposed that there is no difference between K^+ production on neutron and proton, whereas the analysis in Ref. [3] yields $\sigma_n/\sigma_p \sim 2$ for the total production cross sections. The authors of Ref. [4] draw an analogy between K^+ - and η -meson production and give even higher value six for the σ_n/σ_p .

 K^+ -production in *pn* interactions has been investigated with ANKE at two beam energies, $T_p = 1.83$ and 2.02 GeV. Because of the impossibility to build neutron target a cluster deuterium target has been used as quasi-free neutron target. Figure 1 shows the K^+ -momentum spectrum for both beam energy. Based on the assumption that the K^+ -production cross section is governed by the sum of the elementary *pp* and *pn* cross sections, the spectra have been analyzed in a simple phase-space approach, assuming $\sigma_D = \sigma_p + \sigma_n$ with σ_n/σ_p being a free parameter. The main results of this analysis are described below, however, for further details we refer to a forthcoming publication.

Fig. 1:Double differential $pD \rightarrow K^+X$ cross section at 1.83and 2.02 GeV in comparison with our phase-space
calculations using different values for ratios σ_n/σ_p
(lines). The vertical and horizontal kaon emission an-
gles have been restricted to $\vartheta < 4^\circ$ during the anal-
ysis. The overall systematic uncertainty from the lu-
minosity normalization of 20% is not included in the
error bars.

In order to determine σ_n/σ_p , phase-space distributed $pp \rightarrow K^+X$ and $pn \rightarrow K^+X$ events have been generated with a PLUTO package [5] taking into account intrinsic motion of the nucleons in a deuteron. The events have been generated for all reaction channels which may lead to K^+ -production in pN interactions at our beam energy, and have been weighted according to the cross-section given by parameterization from Ref. [3]. Each event has been subsequently tracked through the spectrometer, and all detection efficiencies have been taken into account. In Fig. 1 we show the resulting momentum spectra based on the approach from Ref. [2] (the dashed line labeled " $\sigma_n = \sigma_p$ ") and Ref. [3] (the dash-dotted line labeled " $\sigma_n = 2\sigma_p$ ").

The apparent difference between the calculated and mea-

sured cross sections can be due to the fact that the ratio σ_n/σ_p is different than in Refs. [2, 3]. Thus we repeated the simulations keeping the relative weights of the individual pp and pn channels constant (as given by Ref. [3]) but treating the ratio of the sum of these two contributions, i.e. σ_n/σ_p , as a free parameter. The best agreement between data and calculations is obtained for $\sigma_n/\sigma_p \sim 3$ at 1.83 GeV and $\sigma_n/\sigma_p \sim 4$ at 2.02 GeV (solids lines in Fig. 1).

The resulting large cross-section ratio σ_n/σ_p from the inclusive spectra is supported by the analysis of missing-mass spectra from $pN \rightarrow K^+ pX$ events recorded during the same beam time. The spectrum measured at T = 2.02 GeV shown in Fig. 2 is compared with the result of Monte-Carlo simulations, again for different ratios σ_n/σ_p . In the simulations it has been taken into account that protons can either stem from the K^+ production processes (e.g. $pp \rightarrow pK^+\Lambda$ but not from $pn \rightarrow nK^+\Lambda$) or from the subsequent hyperon decay (pp and pn). The best agreement between data and simulations is obtained with $\sigma_n/\sigma_p \sim (4-5)$.

Fig. 2: Missing mass m_X for $pN \rightarrow K^+ pX$ events at T = 2.02 GeV in comparison with our phase-space calculations using different ratios σ_n/σ_p (lines).

References:

- [1] Z. Rudy et al., Z. Phys. A 15, 302 (2002).
- [2] P.A. Piroué and A. J. S. Smith, *Phys. Rev.* 148, 1315 (1966).
- [3] K. Tsushima et al., Phys. Rev. C 59, 369 (1999).
- [4] G. Fäldt and C. Wilkin, Z. Phys. A 357, 241 (1997).
- [5] http://www-hades.gsi.de/computing/pluto/html/ PlutoIndex.htm.

Supported by BMBF, DFG, RFFI. ^{*a*}PNPI Gatchina, Russia